搜索“her2” 得到 3 个相关资源结果
-
Cancer: specific types
Endometrial cancer
Endometrial cancer (EC) is the most common gynaecological malignancy and the fourth most common malignancy in women in the developed world after breast, colorectal and lung cancer. Two types of endometrial carcinoma are distinguished with respect to biology and clinical course. Type-I carcinoma is related to hyperestrogenism by association with endometrial hyperplasia, frequent expression of estrogen and progesterone receptors and younger age, whereas type-II carcinoma is unrelated to estrogen, associated with atrophic endometrium, frequent lack of estrogen and progesterone receptors and older age. The morphologic differences in these cancers are mirrored in their molecular genetic profile with type I showing defects in DNA-mismatch repair and mutations in PTEN, K-ras, and beta-catenin, and type II showing aneuploidy, p53 mutations, and her2/neu amplification.
-
Cancer: specific types
Breast cancer
Breast cancer is the leading cause of cancer death among women worldwide. The vast majority of breast cancers are carcinomas that originate from cells lining the milk-forming ducts of the mammary gland. The molecular subtypes of breast cancer, which are based on the presence or absence of hormone receptors (estrogen and progesterone subtypes) and human epidermal growth factor receptor-2 (HER2), include: hormone receptor positive and HER2 negative (luminal A subtype), hormone receptor positive and HER2 positive (luminal B subtype), hormone receptor negative and HER2 positive (HER2 positive), and hormone receptor negative and HER2 negative (basal-like or triple-negative breast cancers (TNBCs)). Hormone receptor positive breast cancers are largely driven by the estrogen/ER pathway. In HER2 positive breast tumours, HER2 activates the PI3K/AKT and the RAS/RAF/MAPK pathways, and stimulate cell growth, survival and differentiation. In patients suffering from TNBC, the deregulation of various signalling pathways (Notch and Wnt/beta-catenin), EGFR protein have been confirmed. In the case of breast cancer only 8% of all cancers are hereditary, a phenomenon linked to genetic changes in BRCA1 or BRCA2. Somatic mutations in only three genes (TP53, PIK3CA and GATA3) occurred at >10% incidence across all breast cancers.
-
Signal transduction
ErbB signaling pathway
The ErbB family of receptor tyrosine kinases (RTKs) couples binding of extracellular growth factor ligands to intracellular signaling pathways regulating diverse biologic responses, including proliferation, differentiation, cell motility, and survival. Ligand binding to the four closely related members of this RTK family -epidermal growth factor receptor (EGFR, also known as ErbB-1 or HER1), ErbB-2 (HER2), ErbB-3 (HER3), and ErbB-4 (HER4)-induces the formation of receptor homo- and heterodimers and the activation of the intrinsic kinase domain, resulting in phosphorylation on specific tyrosine residues (pY) within the cytoplasmic tail. Signaling effectors containing binding pockets for pY-containing peptides are recruited to activated receptors and induce the various signaling pathways. The Shc- and/or Grb2-activated mitogen-activated protein kinase (MAPK) pathway is a common target downstream of all ErbB receptors. Similarly, the phosphatidylinositol-3-kinase (PI-3K) pathway is directly or indirectly activated by most ErbBs. Several cytoplasmic docking proteins appear to be recruited by specific ErbB receptors and less exploited by others. These include the adaptors Crk, Nck, the phospholipase C gamma (PLCgamma), the intracellular tyrosine kinase Src, or the Cbl E3 ubiquitin protein ligase.